

Energy storage with supercapacitors

I THE LEDN 1514

Hartmut S. Leipner

Martin-Luther-Universität Halle–Wittenberg

Interdisciplinary Center of Materials Science

Central lab units (CMAT-MLU Halle)

- Nanostructuring: lithography, thin film deposition, device prototyping
- Nanoanalysis: electron microscopy, optical characterization, positron annihilation

Research disposal area (Bio-Nano Center)

for physists, chemists, materials scientists, biologists, pharmacists MLU, MPI, Fraunhofer, TGZ (KMU)

Renewable energy materials

 Nanostructured thin film materials as functional elements for next-generation solar cells

 Silicon-related materials for thermoelectric applications

 Novel supercapacitors as energy storage devices

GEFÖRDERT VOM

Equipment

Nanostructuring

Analysis

Cleanroom class 10/100/10000

- Various electron microscopes
- Raman microscopy, ellipsometry
- Atomic force microscopy
- Electrical/thermal transport measurements

Nanostructured materials

- Better energy storage devices are needed for sustainable energy supply.
- New materials are the key for basic improvements.
- Nanoscaled materials can be precisely adopted for energy harvesting, transformation and storage.
- Excellent properties for the selection of electrodes, electrolytes or dielectrics
- Nano-scaled electrolytes, nanoelectrodes for lithium ion batteries, supercapacitors, fuel cells
- The same concept is followed for electrochemical, as well as for electrostatic storage devices.

- Oil resources: 3 trillion barrels (4 · 10¹⁴ kg) ≜ energy of 2 · 10²² J;
 supplied from the Sun in 1½ days
- Amount of energy humans use annually: 5 10²⁰ J,
 delivered to Earth by the Sun in 1 h
- Enormous power of the Sun continuously delivered to Earth:
 1 10⁵ TW; human civilization uses currently 10 TW

Energy storage

- Renewable energy sources: highly discontinuous
- Various energy storage concepts
 - Thermal and thermochemical storage (water, water–gravel, latent heat)
 - Chemical storage (hydrogen)
 - Mechanical storage
 (fly wheel, pump storage station, compressed air)
 - Electrochemical storage (lead, lithium ion, redox flow, NaS battery)
- Advantages ↔ disadvantages
 - \rightarrow no single solution for all applications

Ragone diagram

Time scales

11 12 10

- Large time scales (seconds to weeks)
- Short-time storage
 (fluctuations in the grid, grid management, guarantee of supply)
- Middle-range storage (electromobility)
- Long-time storage
 (e. g. longer periods without wind)

Need for energy storage

Example of the time dependence of the daily electrical power demand [Huggins 2010]

Electrical storage

Characteristics

- Energy density, power density, storage time, voltage
- Industrial processing, prize, weight
- Electrochemical devices (batteries, accumulators) mainly used
- Disadvantages
 - Limited lifetime, temperature range
 - Memory effect
 - Problems with overloading, deep discharge
 - Low charging speeds

Selfdischarge	Battery:		1 – 5 %	per year
	Accum:	Li Ion: Lead: NiCd:	2 % 2 – 30 % 15 – 20 %	per month

Lithium ion battery

Scheme of a classical LIB [Wallace 2009]

Capacitors

Capacitance *C* = Amount of charge stored per unit voltage

$$C = \varepsilon_{\rm r} \varepsilon_0 \frac{A}{d}$$

$$\varepsilon_0$$
 dielectric constant $\approx 9 \cdot 10^{-12}$ F/m
 ε_r relative static permittivity of the dielectric
(sometimes called dielectric constant)

Energy stored:
$$E = \frac{1}{2}CU^2 = \frac{1}{2}\varepsilon_r\varepsilon_0\frac{A}{d}U^2$$

Dipole moment

- Induced dipole moment of a single atom by the external electric field
 $\mathcal{P}_{a} = qd$
- Polarisation of a dielectric crystal (dipole moment per volume) $\mathcal{P} = Nqd$

Dielectric crystal made of atomic dipoles. The result of the external field ist a surface charge on both terminals.

Ferroelectrics

- Materialials with a finite polarization, even without an external field
- Name misleading: no iron; properties resemble ferromagnetic solids
- Hysteresis in the polarization

Arrangement of dipoles

Ferroelectric hystereses with the arrangement of the dipoles [Askeland 1996]

Structure of barium titanate

Compared to the ideal cubic arrangement, the positive and negative ions are shifted by a distance of $d_{\pm} \approx 0.01$ nm.

Design of a ceramic capacitor

Examples of ceramic capacitors. Single-layer ceramic capacitor (plate capacitor) and multilayer capacitor (stacked ceramic layers).

[Askeland 1996]

Double-layer capacitor

Capacity

$$C = \frac{\varepsilon_{\rm r} \varepsilon_0 A}{d} \qquad \frac{C}{A} = \frac{\varepsilon_{\rm r} \varepsilon_0}{p \ln \frac{p}{a_0}}$$

(*p* pore radius, *a*⁰ effective ion size)

$$E = \frac{1}{2}CU^2$$

Charged double-layer capacitor with two double layers in series (i. e. the interfaces electrode–charged layer and charged layer– electrolyte) with a large specific surface.

[Scherson, Palenscár 2006]

Capacity

10 µm

Graphite particles with a large specific surface [Takamura *et al* 2007]

Commercially available standard capacitors

Ceramic capacitors

based e. g. on barium titanate

+ high permittivity+ thermal stability+ allow high frequencies

- brittle

Thin-film polymer capacitors

e.g. PET, PP

- + high voltage+ low conductivity+ simple shapes
- low permittivity

Composite dielectrics

Mixing rules

Simple models

- Serial or parallel connections
- Isotropic statistic distribution of spherical particles in a homogeneous matrix

Permittivity ε' as a function of the frequency ν for different 0–3 composites

Composite capacitors

Advantages of composite supercapacitors

- Robust, negligible aging, high lifetime
- High charging voltages
- Thermal stability (operation temperatures > 60 °C possible
- No cooling
- High charging or discharging rates
- High efficiency
- Modular structure
- Environmentally friendly
- Reasonable energy and power density

Ceramic particles

◆ BaTiO₃

- Ferroelectric, $\varepsilon_r > 2000$
- Phase transitions
- CaCu₃Ti₄O₁₂
 - Non ferroelectric
 - Giant ε_r > 100 000
- Different synthesis routes
 - Oxide mixing, Pecchini, Oxalate, Sol–Gel
 - Particle size 50...100 nm

Permittivity ε ' of single crystal CCTO as a function of the temperature *T* and the frequency ν [Lunkenheimer *et al* 2010]

Matrix and shell components

- Polymer films
 - PVDF
 - ✤ P(VDF-HFP)
 - Poly(bisphenol A-carbonate)
- Glasses
- Preparation methods
 - Sintering, spin coating, spray deposition
- Surface coating
 - Passivation of the surface, block aggregation/percolation, minimum of leakage current, high breakdown voltage
 - Phosphonic acids; E-glass

Thin film preparation

homogeneous, reproducible, scalable, cheap

- Single films, lab stage
 - Spin coating
 - Established for homogeneous solutions
 - More difficult for composites
 - Thickness profile may become inhomogeneous
 - Problems with rectangular substrates, geometry effects
 - Molding, pressing sintering
- Large areas with linear coating, spray deposition
- Transition to multilayers

Energy density of a capacitor

Max. voltage given by the break-down voltage

$$U_{\rm b} = \mathscr{E}_{\rm b} d$$

Storage density

$$w_{\rm Sp} = \frac{E}{V} = \frac{\mathscr{C}}{Ad} \frac{U_{\rm b}^2}{2} = \varepsilon_0 \varepsilon_{\rm r} \frac{\mathscr{E}_{\rm b}^2}{2}$$

- Typical no. for a polymer dielectric: ≈ 0.3 kWhm⁻³
- Storage efficiency of capacitors $\rightarrow 1$

Application of supercapacitors

- Control of the pitch angle of the rotors in wind turbines big variation in *T*, independent of the grid, no maintanace
- Start of microturbines or fuel cells working as UPS requires usually some 100 kJ electrical energy within ca. 10 ... 20 s
- Energy storage for photovoltaics; capacitors can supply periodic power with higher currents as coming directly from the solar modules
- Recuperation of brake energy in cars

Recuperation

- Brake which regains the electrical energy from the motor acting as a generator during braking (grid, energy storage)
- Since the 1920ies in the Swiss Krokodil
- Hybrid cars: electrical energy into the battery, storage capacitors or fly wheel

SBB Ce 6/8^{II} electrical locomotive *"Krokodil"*, working in the Gotthard railway until the 1980ies

recuperare (*lat*.) = regain

Fuel saving in the car

- Regain of kinetic energy when idling or braking and feeding into the battery
- During acceleration all energy consumers which are not necessary are separated from the power train
- strong generator + electronic regulation: "dynamo" not working permanently
- Commercials: Efficieny dynamics, brake energy regain

Benefits of capacitors for energy storage

- Maintanance free, relative low weight
- Resistent to temperature variations
- Long lifetime
- More than 500000 charge–discharge cycles
- No destruction by deep discharge

Conclusions

- Present energy density of capacitors low, but high power density
- Possibilities of short-term storage (e. g. grid stabilization, automotive applications, sensors)
- High development potential with the overcome of materials science problems

"Did anyone call for high-power, infinitely rechargeable electrical energy storage?"

Thanks to the Super-Kon team:

H. Beige, A. Buchsteiner, M. Diestelhorst,
S. Ebbinghaus, C. Ehrhardt, J. Glenneberg,
T. Großmann, S. Lemm, W. Münchgesang,
C. Pientschke, K. Suckau, G. Wagner, M. Zenkner

References

- **RA** Huggins: *Energy storage*. New York: Springer 2010.
 - DR Askeland: *The Science of engineering of materials*. Cheltenham: Nelson Thornes, ³2001.
 - P Lunkenheimer et al: Eur Phys J Spec Top **180** (2010) 61.
 - gravityandlevity.wordpress.com
 - wikipedia.org

10

10

10

10

....

10

10

10

10

10

10

10

- http://www.h2it.org/wp-content/uploads/2011/09/energy-storage.jpg
- smallbiztrends.com/wp-content/uploads/2010/08/time.jpg
- www.keyboardathletes.com/wp-content/uploads/iStock_000009554710XSmall.jpg
- www.youtube.com/watch?v=l2RMnmjQynM&feature=related
- hondaoldies.de/Korbmacher-Archiv/Technik/ucap.htm
- www.conrad.com/medias/global/ce/
 - 4000_4999/4500/4500/4508/450800_BB_00_FB.EPS_1000.jpg
- www.vfo-magazin.de/uploads/images/300/Solar_3.jpg
- green.wiwo.de/wp-content/uploads/2013/03/Druckluftspeicher_Caestorage1.jpg
- DA Scherson, A Palenscár: Electrochem Soc Interf 17–22 (2006).
- GW Crabtree, NS Lewis: Phys today **3** (2007) 37.
- GG Wallace *et al*: Mater today **12** (2009) 20.
- B HD Abruña *et al*: Phys today **61** (2008) 43.
- T Takamura *et al*: Electrochim Acta **53** (2007) 1055.